
Chapter	10	Form	Processing	–	Adding	Elements	

	

At	this	point	we	have	our	form	process	complete!	Of	course	not	many	forms	just	ask	for	
your	email	address.	When	we	expand	our	form,	we	want	to	follow	the	same	building	
process	of	small	amounts	of	code	at	one	time	making	sure	it	works	before	moving	on.	So	we	
will	add	to	our	form	one	element	at	a	time.	Let's	start	with	just	adding	another	text	box.	
What	we	want	to	see	is	the	six	things	we	need	to	do:	

1. SECTION:	1c	initialize	a	variable	for	the	element	
2. SECTION:	1d	initialize	an	error	flag	for	the	element	
3. SECTION:	2b	Sanitize	the	value	from	the	POST	array	
4. SECTION	2c	Validate	the	data.	Remember	this	is	a	three	step	process	that	can	be	

repeated	as	many	times	as	needed.	
a. Perform	your	validation	check	ex:	if($firstName=="")	
b. Create	your	error	message	display	ex:	$errorMsg[]="Please	enter	your	first	

name"	
c. Set	Error	Flag	to	true	
d. Repeat	for	each	validation	check.	

5. SECTION:	2e		put	the	value	in	the	dataRecord	array	to	be	saved	
6. SECTION	3c	Add	the	HTML	for	the	element	

The	rest	of	the	code	will	just	work	since	it	is	based	on	loops	and	arrays	so	we	don’t	need	to	
change	anything	else.	Each	time	we	add	a	new	element	our	csv	will	get	a	new	column.	This	
does	mean	that	any	existing	rows	in	the	csv	file	will	not	have	the	new	column	and	you	
should	start	fresh	with	a	new	csv	file.	The	easy	way	to	do	this	is	create	an	empty	file	and	ftp	
the	file	to	replace	the	now	old	csv	file	(this	will	delete	any	data	existing).	

The	code	is	very	similar	for	all	the	form	elements	but	let's	go	over	them	and	talk	about	the	
little	things	in	each	one.	All	elements	must	have	the	name	attribute	or	it	will	not	show	in	
the	post	array.	Let's	start	with	just	adding	another	text	box	since	that	is	what	we	already	
have.	I	want	to	add	First	Name.	

Text Box
Looking	at	the	six	steps	I	need	to	make	a	variable	for	First	Name	that	sounds	like	a	good	
name	to	me	so	lets	take	out	the	blank	space	and	use	camel	case.	We	put	this	code	in	section	
1c.		

$firstName = "";
	

Technically	the	order	does	not	matter	however	in	some	cases	it	will	make	a	difference	so	
the	best	order	to	use	is	to	initialize	your	variables	in	the	order	they	will	appear	on	your	
from.	In	my	example	I	am	going	to	put	this	before	$email.	

The	second	step	is	to	initialize	an	error	flag	variable.	No	sense	in	being	creative	on	a	name	
we	can	just	tack	Error	to	the	end	of	the	variable.	This	code	goes	in	section	1d.	

$firstNameERROR = "";
	

Since	I	want	to	have	my	code	"clean"	I	am	going	to	add	this	before	the	flag	for	email.	I	am	
going	to	keep	the	order	the	same	in	each	step.	

The	third	step	is	to	sanitize	our	data.	For	the	email	address	we	had	a	php	built	in	function	
but	for	first	name	we	are	just	going	to	use	html	entities	like	we	did	in	Chapter	4.	Of	course	
for	this	code	I	need	to	know	the	html	entity	name	so	I	am	going	to	just	use	firstName	but	
tack	on	a	three	letter	prefix	txt	for	a	text	box	to	come	up	with	txtFirstName.	This	code	goes	
in	section	2b.	

$firstName = htmlentities($_POST["txtFirstName"], ENT_QUOTES,
"UTF-8");
	

The	Fourth	step	is	validate	our	data.	We	need	to	think	of	what	can	we	check	for	a	first	
name?	We	can	check	to	see	if	it	is	empty	if	we	require	the	user	to	enter	it.	We	can	also	check	
if	the	name	has	only	letters	with	an	occasional	number.	Luckily	we	have	a	function	we	

made	from	Chapter	7.	Since	we	have	two	checks	we	will	use	a	an	if	else	programming	
statement.	This	code	goes	in	section	2c.	

if ($firstName == "") {
 $errorMsg[] = "Please enter your first name";
 $firstNameERROR = true;
} elseif (!verifyAlphaNum($firstName)) {
 $errorMsg[] = "Your first name appears to have extra
character.";
 $firstNameERROR = true;
}
	

Remember	the	three	step	process	for	validating:	

1. What	are	you	going	to	check	for?	
2. Prepare	your	error	message	for	the	user.	
3. Flag	that	this	element	has	a	mistake.	

Do	you	see	the	steps	above	repeated	twice?	

The	Fifth	step	is	prepare	our	data	to	be	saved.	To	do	this	we	put	the	value	into	the	array	for	
saving.	I	created	an	array	called	$dataRecord	for	this	purpose.	The	order	is	important	as	
this	is	the	order	that	the	data	will	be	put	into	excel.	It	dictates	the	column	order.	I	am	going	
to	stay	with	the	same	order	which	I	based	on	the	order	the	elements	appear	on	the	form.	So	
I	will	put	this	code	before	the	$email	again.	This	code	goes	in	Section	2e.	

$dataRecord[] = $firstName;
	

The	Six	and	last	step	is	to	create	the	actual	html	for	the	element	in	section	3c.	

<p>
 <label class="required text-field" for="txtFirstName">First
Name</label>
 <input <?php if ($firstNameERROR) print 'class="mistake"';
?>
 id="txtFirstName"
 maxlength="45"
 name="txtFirstName"
 onfocus="this.select()"
 placeholder="Enter your first name"
 tabindex="100"

 type="text"
 value="<?php print $firstName; ?>"
 >
</p>
	

That	completes	the	process.	At	this	point	you	would	ftp	your	code	and	check	to	make	sure	
it	works.	There	are	three	things	to	verify.	

1. If	you	don’t	add	a	first	name	it	prompts	you	with	the	error	message	
2. If	you	type	a	first	name	the	error	message	gets	cleared.	I	test	this	by	deleting	the	

email	address	so	I	still	have	a	mistake.	
3. When	the	data	is	correct	and	submit	the	form	the	message	displays	the	value	you	

entered.	
4. The	email	message	contains	the	value	you	entered.	
5. Open	the	csv	file	and	make	sure	the	value	was	saved.	

Once	you	have	verified	that	your	code	works	as	you	expect	it	to	then	move	on	to	the	next	
form	element	that	you	need.	In	this	case	it	might	be	last	name	J	which	the	process	above	is	
the	same.		I	am	going	to	skip	to	the	next	form	element	I	want	to	go	over.	

Text Area
The	next	element	to	talk	about	is	a	text	area	which	in	many	ways	is	the	same	as	a	text	box	
since	they	contain	text	just	more	of	it.	So	here	is	the	code	for	the	six	steps:	

1. // Initialize variable: SECTION 1c.
$comments="";

2. // Initialize error flag: SECTION 1c.
$commentsERROR = false;

3. // Sanitize the data: SECTION 2b.
$comments = htmlentities($_POST["txtComments"], ENT_QUOTES,
"UTF-8");

4. // Validate the data: SECTION 2c.
// Note that this if statements mean the comments are not
required
if ($comments != "") {
 if (!verifyAlphaNum($comments)) {
 $errorMsg[] = "Your comments appear to have extra
characters that are not allowed.";
 $commentsERROR = true;

 }
}

5. // Prepare to save the data: SECTION 2e.
$dataRecord[] = $comments;

6. // Create the html for the text area: SECTION 3c.
<p>
 <label class="required"
 for="txtComments">Comments</label>
 <textarea <?php if ($commentsERROR) print
'class="mistake"'; ?>
 id="txtComments"
 name="txtComments"
 onfocus="this.select()"
 tabindex="200"><?php print $comments; ?></textarea>
<!-- NOTE: no blank spaces inside the text area, be sure to
close the text area directly -->
</p>

If	I	do	I	put	the	html	code	on	separate	lines	which	seems	normal	like	this:	

tabindex="200">
<?php print $comments; ?>
</textarea>
	

My	text	area	will	contain	blank	spaces.	You	can	see	them	when	the	text	area	receives	the	
focus	because	they	will	be	highlighted	meaning	the	text	area	is	not	empty	as	you	can	see	by	
the	highlighted	blue	below.	

	

Radio buttons
Radio	buttons	are	used	to	help	prevent	user	input	errors	by	giving	the	user	a	chance	to	
choice	which	one	option	they	want.	Gender	is	a	common	one	for	radio	buttons.	So	let's	go	
over	the	six	steps.	We	are	letting	the	user	choose	one	option	so	we	need	one	variable.	

1. // Initialize variable: SECTION 1c.
$gender="Female";

2. // Initialize error flag: SECTION 1c.
$genderERROR	=	false;

3. // Sanitize the data: SECTION 2b.
We need to check to make sure there is a value in the post
array, otherwise a php error would result.
if (isset($_POST["radGender"])) {
 $gender = htmlentities($_POST["radGender"], ENT_QUOTES,
"UTF-8");
}else {
 $gender = "";
}

4. // Validate the data: SECTION 2c.
// Note even though we as the programmer provide the value
we need to validate it in case someone tries to sneak
something by.
if($gender != "Female" AND $gender != "Male" AND $gender !=
"Prefer"){
 $errorMsg[] = "Please choose a gender";
 $genderERROR = true;
}

5. // Prepare to save the data: SECTION 2e.
$dataRecord[] = $gender;

6. // Create the html for the radio buttons: SECTION 3c.	
<p>
 <label class="radio-field">
 <input type="radio"
 id="radGenderFemale"

 name="radGender"
 value="Female"
 tabindex="582"

 <?php if ($gender == "Female") echo '
checked="checked" '; ?>
 > Female</label>
</p>	
<p>
 <label class="radio-field">
 <input type="radio"
 id="radGenderMale"
 name="radGender"
 value="Male"
 tabindex="584"
 <?php if ($gender == "Male") echo ' checked="checked"
'; ?>
 > Male</label>
</p>
<p>
 <label class="radio-field">
 <input type="radio"
 id="radGenderPrefer"
 name="radGender"
 value="Prefer"
 tabindex="586"
 <?php if ($gender == "Prefer") echo '
checked="checked" '; ?>
 > Prefer not to say</label>
</p>
When	the	form	is	submitted	the	radio	button	that	is	checked,	that	value	will	be	in	the	post	
array.	If	nothing	is	chosen	then	the	radio	button	is	not	in	the	post	array.	

Check Boxes
Check	boxes	are	used	to	help	prevent	user	input	errors	by	giving	the	user	a	chance	to	
choose	every	option	they	want.	Check	boxes	are	different	than	radio	buttons	because	you	
have	one	variable	for	every	checkbox	(radio	buttons	have	one	variable	for	all	radio	
buttons).		So	let's	go	over	the	six	steps.	You	will	need	to	do	the	six	steps	for	each	checkbox	
you	have.	In	this	example	I	am	going	to	set	the	check	box	to	check	by	assigning	true	to	the	
variable.	

1. // Initialize variable: SECTION 1c.
$promotionalMaterial = true;

2. // Initialize error flag: SECTION 1c.
Technically	with	one	check	box	there	are	no	errors.	However	sometimes	we	want	a	
user	to	select	at	least	one	in	a	group	so	that	is	that	this	is	for.	
$preferenceERROR = false;
$totalPreferenceChecked = 0;

3. // Sanitize the data: SECTION 2b.
Technically	we	are	not	sanitizing	anything	but	we	are	setting	the	value.	If	the	checkbox	
is	not	checked	then	it	is	not	in	the	post	array.
if (isset($_POST["chkPromotionalMaterial"])) {
 $promotionalMaterial = true;
}else {
 $promotionalMaterial = false;
}

4. // Validate the data: SECTION 2c.
Many	times	for	check	boxes	there	is	nothing	to	validate	but	if	you	wanted	to	make	sure	
the	user	checked	at	least	one	item	this	is	how	we	can	do	that.	
if($totalPreferenceChecked < 1){
 $errorMsg[] = "Please choose at least one preference.";
 $preferenceERROR = true;
}

5. // Prepare to save the data: SECTION 2e.
$dataRecord[] = $promotionalMaterial;

6. // Create the html for the check box: SECTION 3c.
<fieldset class="checkbox <?php if($activityERROR) print '
mistake'; ?>">
<p>
 <label class="check-field">
 <input <?php if ($promotionalMaterial) print " checked
"; ?>
 id="chkPromotionalMaterial"
 name="chkPromotionalMaterial"
 tabindex="620"
 type="checkbox"
 value="Promotional Material"> Would you like to
receive promotional material.</label>
</p>
</fieldset>

Notice	how	I	set	the	field	set	to	a	mistake	so	that	the	whole	area	is	highlighted.	Be	sure	
to	make	sure	when	there	is	a	mistake	that	a	user	can	still	the	check	boxes.	

List Boxes
A	list	box	is	used	when	you	want	the	user	to	choose	one	of	a	large	list,	if	your	list	is	small	
radio	buttons	may	be	the	best	option.	However	try	to	image	50	radio	buttons	to	choose	a	
state.	There	are	multiple	select	list	boxes	but	they	go	beyond	the	scope	of	this	text.	

So	let's	go	over	the	six	steps.	

1. // Initialize variable: SECTION 1c.
$mountain = "Camels Hump";

2. // Initialize error flag: SECTION 1c.	
$mountainERROR = false;

3. // Sanitize the data: SECTION 2b.
$mountain = htmlentities($_POST["lstMountain"], ENT_QUOTES,
"UTF-8");

4. // Validate the data: SECTION 2c.
If	you	build	the	list	box	from	an	array	you	can	check	to	see	if	the	value	is	in	the	array.	So	
this	example	assumes	there	is	an	array	called	$peaks		
if(!in_array($mountain, $peaks)){
 $errorMsg[] = "Please choose a favorite mountain.";
 $mountainERROR = true;
}

5. // Prepare to save the data: SECTION 2e.
$dataRecord[] = $mountain;

6. // Create the html for the list box: SECTION 3c.
<p>
 <legend>Favorite Mountain</legend>
 <select id="lstMountains"
 name="lstMountains"
 tabindex="520" >
 <option <?php if($mountain=="HayStack Mountain")
print " selected "; ?>
 value="HayStack Mountain">HayStack
Mountain</option>

 <option <?php if($mountain=="Camels Hump") print "
selected "; ?>

 value="Camels Hump">Camels Hump</option>
 <option <?php if($mountain=="Laraway Mountain") print
" selected "; ?>
 value="Laraway Mountain">Laraway
Mountain</option>
 </select>
</p>

Summary	
Now	your	form	is	complete.	The	nice	part	is	that	most	of	the	code	you	have	already	
written	as	part	of	the	process	will	work.	You	do	not	need	to	add	anything	more	to	save	
the	information	to	a	cs	file.	Your	existing	code	will	mail	the	information	to	the	user.	Any	
error	messages	will	be	displayed.	

Of	course	this	is	always	more	customization	that	you	can	do	especially	with	the	
message	in	regards	to	check	boxes.	As	with	most	customization	it	involves	if	statements.	
Previously	we	looked	at	removing	the	submit	button	and	you	can	do	something	similar	
to	create	a	custom	part	for	check	boxes.	I	hope	this	has	helped	you	to	understand	not	
only	the	form	process	but	forms	in	general.	

Self	Test	Questions	
1. Text boxes

Create a form with 3 text boxes for Street Address, City, and Zip code. On submit,
display the submitted values as one address string. (i.e. 123 Street Rd., Big City, 12345)

2. Text Area

Create a form with a text area. On submit, parse through the submitted text and replace
any occurrence of the letter “a” with the letter “z”.

3. Radio Buttons
Create a form with three radio buttons. Selecting option 1 will mail a message to your
email, and selecting option 2 will mail a different message to your email. Selecting option
3 will not mail a message at all. Load each message from a respective file.

4. Check Boxes
Create a form with 5 check boxes. Write some php code that displays a different image
on the resulting page depending on which of the 5 boxes are selected.

5. List Boxes
Create a form with a list box that contains all 50 states in the US. Display a google maps
embed on the resulting page that is centered on the state selected.

	

