
Chapter	3	Opening	a	File	

In	this	chapter	I	want	to	talk	about	opening	a	file	using	PHP.	It	is	more	or	less	the	same	as	
opening	up	a	Word	document	or	Excel	spreadsheet	where	you	choose	File,	Open,	click	on	
the	filename	and	choose	Open	and	boom	the	file	is	displayed	on	the	screen	(of	course	you	
may	have	just	double	clicked	the	file	name	as	a	shortcut).	Our	job	is	to	tell	the	computer	to	
do	the	same	thing.	We	are	going	to	open	a	csv	(comma	separated	values)	file	which	is	just	
like	an	Excel	spreadsheet	without	any	formatting.	We	are	going	to	be	using	only	csv	files	for	
the	course	though	you	can	open	other	types	of	files.	

To	open	a	file	we	use	the	built	in	PHP	function	fopen	
[http://php.net/manual/en/function.fopen.php].		Here	is	the	general	syntax:	

fopen('path/filename', 'mode')

The	path	/filename	is	the	folder	and	what	you	called	the	file.	The	mode	is	how	you	want	to	
open	the	file	and	the	manual	lists	all	the	possibilities.	For	our	purpose	there	are	three	that	
we	use:	

1. 'r' Opens	the	file	for	reading	only.	
2. 'a' Opens	the	file	for	writing,	appending	to	the	end	of	the	file.	
3. 'w' Opens	the	file	for	writing,	always	starting	fresh	and	deleting	what	was	

previously	saved	in	the	file.	

For	writing	(both	modes	a,	w)	the	path	must	exist	(i.e.	you	need	to	make	the	folder)	but	the	
file	does	not	have	to	exist.	Both	statements	will	create	a	new	file	if	the	file	does	not	exist	
already.		

An	example	of	the	fopen	command	in	use	would	look	like	this:	

$file=fopen('data/food.csv', 'r');

Notice	we	have	a	folder	named	data	with	the	file	name	food.csv.	We	assign	the	variable	
$file	to	the	result	of	the	fopen	statement	which	would	be	a	connection	from	the	PHP	file	to	
the	file	you	have	opened.	If	the	connection	cannot	be	made	$file	is	assigned	FALSE.		

My	csv	file	looks	like	this:	

pmkId,fldUsername,fldDescription,fldCalories,fldLinkToFoodGawker,fldImageUrl	
1,rerickso,Breakfast	is	served,189,http://foodgawker.com/post/2012/11/27/207904/,muffin_thumb.jpg	
2,rerickso,Lunch	is	served,220,http://foodgawker.com/post/2012/11/27/207904/,muffin_thumb.jpg	
	

In	Excel	it	looks	like	this:	

	

One	of	the	biggest	mistakes	everyone	has	is	not	actually	having	the	file	present	on	the	
server	(your	forgot	to	upload	it)	or	having	the	filename	incorrect.	So	to	help	us	"debug"	
[https://en.wikipedia.org/wiki/Debugging#Origin]	or	find	the	mistakes	in	our	computer	
code	we	can	add	a	few	variables.	First	create	a	'flag'	variable	called	debug	which	we	can	use	
to	decide	if	we	want	to	display	a	debugging	value	or	not.	

$debug = false;

When	you	want	to	see	your	debugging	output	you	can	set	this	to	true.	To	make	it	easier	for	
our	classroom	we	can	add	a	statement	(never	done	live,	only	for	a	class)	that	allows	us	to	
pass	in	a	value	to	the	web	page	and	set	debug	to	true.	I	put	this	code	at	the	beginning	of	the	
document.	

if (isset($_GET['debug'])) {
 $debug = true;
}

What	isset	does	is	that	it	looks	in	the	URL	GET	to	see	if	there	is	a	variable	called	debug	
which	would	come	after	the	fielname	and	question	mark.	Remember	this	is	only	done	for	a	
classroom	setting	to	make	it	easier	for	us	to	help	you.	The	URL	would	look	like	this:	

http://rerickso.w3.uvm.edu/cs008/tryme.php?debug=t	

Where	we	just	append	the	variable	name	and	value	debug=t	to	the	end.	We	use	a	?	mark	to	
separate	the	file	name	and	the	GET	variable	as	they	are	called.	Of	course	by	itself	this	does	
nothing.	We	would	have	to	add	a	few	print	statements	to	print	out	the	values	so	we	can	see	
what	is	in	the	computer’s	memory.	It	is	easier	to	put	the	filename	in	a	variable	so	that	we	
can	do	this.	So	instead	of	opening	the	filename	we	open	the	variable.	This	is	the	same	thing	
only	using	a	variable	makes	for	more	flexible	code.	Here	I	have	separated	the	filename	into	
three	variables	and	printed	it	out.	

$myFolder = 'data/';
$myFileName = 'food';
$myfileExt = '.csv';
$filename = $myFolder . $myFileName . $myfileExt;
if ($debug) print '<p>filename is ' . $filename;

It	may	look	like	I	made	a	typo	with	my	if	statement	as	it	is	all	on	one	line.	However	this	is	ok	
since	we	have	only	one	statement.	It	is	not	always	the	best	thing	to	do	as	if	you	want	to	add	
another	line	of	code	to	the	if	statement	you	would	have	to	add	the	curly	braces.	

if ($debug) print '<p>filename is ' . $filename;

Is	the	same	as:	

if ($debug) {
 print '<p>filename is ' . $filename;
}

However	this:		

if ($debug) print '<p>filename is ' . $filename;
 print '<p>Testing without {}';

Is	NOT	the	same	as:	

if ($debug) {
 print '<p>filename is ' . $filename;
 print '<p>Testing with {}';
}

In	the	first	if	statement,	"testing	without	{}"	will	always	print	because	without	the	curly	
braces	the	if	statement	only	applies	to	one	line.	The	second	if	would	only	print	"Testing	
with	{}"	if	$debug	was	set	to	true.	Clear	as	mud?	

Printing	out	the	path/filename	is	useful	so	that	you	can	compare	it	to	what	you	have	setup	
on	your	computer	and	uploaded	to	the	server.	I	also	add	a	debug	statement	to	let	me	know	
if	the	file	was	opened.	Here	is	the	whole	block	of	code	to	open	a	file.	The	good	news	is	that	
the	only	part	that	ever	changes	is	the	filename.	The	rest	stays	the	same.	

<?php
// Open a CSV file
$debug = false;
if (isset($_GET["debug"])) {
 $debug = true;
}

$myFolder = 'data/';

$myFileName = 'food';

$fileExt = '.csv';

$filename = $myFolder . $myFileName . $fileExt;

if ($debug) print '<p>filename is ' . $filename;

$file=fopen($filename, "r");

if ($debug) {
 if ($file) {
 print '<p>File Opened Successfully.</p>';
 } else {
 print '<p>File Open Failed.</p>';
 }
} ?>

The	above	code	block	is	something	you	save	and	use	over	and	over	again	anytime	you	need	
to	open	a	file.		Technically	the	shortest	way	would	be	to	have	one	line	of	code	like	this:	

<?php
// Open a CSV file
$file=fopen('data/food.csv', "r");
?>

better	would	be	to	use	a	variable	but	you	can	use	just	one	like	this:	

<?php
// Open a CSV file
$filename = 'data/food.csv';
$file = fopen($filename, "r");
?>

I	added	the	rest	of	the	code	to	help	make	it	easier	for	me	to	help	you	when	you	make	a	
mistake.	

Now	all	the	code	above	does	is	open	a	file	so	we	now	need	to	read	the	file	into	the	
computer’s	memory	so	we	can	do	something	with	it.	To	read	a	csv	file	we	use	the	PHP	
function	fgetcsv	which	reads	one	line	at	a	time.	The	syntax	is	where	$file	is	the	variable	you	
opened	the	file	with:	

fgetcsv($file);

We	always	put	the	file	into	an	array	so	we	can	access	each	row	at	a	time.	Since	many	csv	
files	come	with	a	header	row	(text	describing	the	data	in	each	column)	I	always	read	the	
header	into	its	own	array	like	this:	

$headers[]=fgetcsv($file);

If	there	are	more	than	one	header	rows	just	repeat	the	line	twice.	I	am	appending	the	row	
to	an	array	so	you	can	read	as	many	times	as	you	want.	On	the	other	hand,	if	you	don't	have	
a	header	row	just	delete	that	line.	A	couple	of	points	to	keep	in	mind:	

1. Always	make	sure	the	file	is	opened	with	a	simple	if	statement	using	the	same	file	
variable	name	(in	my	examples	it	has	always	been	$file).	

2. It	is	a	good	idea	to	add	debug	statements	so	you	can	see	what	is	in	your	headers.	If	
all	your	data	is	in	your	headers	there	is	a	problem	with	your	csv	file.	

Next	we	need	to	read	all	the	data	into	an	array.	(Name	the	array	based	on	the	data	in	the	
csv	file.	For	example	mine	is	about	foods	so	that	is	what	I	will	name	my	array,	giving	the	
name	a	plural	name)	We	want	to	keep	reading	until	there	are	no	more	records	left	so	we	
need	a	repetition	structure.	Since	we	do	not	know	how	many	times	to	read	the	file	(it	may	
be	none)	we	are	going	to	use	a	while	loop	[http://php.net/manual/en/control-
structures.while.php]	checking	to	see	if	we	are	at	the	end	of	the	file	(feof	
[http://php.net/manual/en/function.feof.php]).	Each	time	in	the	loop	we	append	to	the	
end	of	our	array	what	is	returned	by	the	fgetcsv	statement	that	we	used	to	read	the	
headers.	Here	is	the	complete	code	block	to	read	a	file	into	an	array:	

<?php
if ($file) {
 if ($debug) print '<p>Begin reading data into an array</p>';

 // read the header row, copy the line for each header row
 // you have.
 $headers[] = fgetcsv($file);

 if ($debug) {
 print '<p>Finished reading headers.</p>';
 print '<p>My header array:</p><pre>';
 print_r($headers);
 print '</pre>';
 }

 // read all the data
 while (!feof($file)) {
 $foods[] = fgetcsv($file);
 }

 if ($debug) {
 print '<p>Finished reading data. File closed.</p>';
 print '<p>My data array<p><pre> ';
 print_r($foods);
 print '</pre></p>';
 }
} // ends if file was opened
?>

What	is	nice	about	this	code	block	is	there	are	only	two	things	you	ever	need	to	change	
when	reading	in	a	csv	file:	

1. If	you	don't	have	a	header	row	you	don't	read	the	header	row.	If	you	have	two	lines	
of	headers	in	the	csv	then	you	need	to	read	two	lines	by	coping	the	line	
$headers[] = fgetcsv($file);

2. Change	the	name	of	the	array	in	two	places.	For	example	my	array	is	called	foods	so	
if	my	data	was	about	trees	I	would	inside	the	while	loop	change	foods	to	trees	and	
then	again	in	the	debug	if	block.	

We	have	opened	our	file	and	read	the	contents	into	an	array	in	memory.	We	should	close	
the	file	using	the	PHP	function	fclose	[]	which	looks	like	this.	Again	the	variable	I	used	was	
$file.	

fclose($file);

The	last	step	is	to	do	something	with	your	data.	This	is	also	the	hardest	part	as	it	is	not	
always	the	same,	unlike	the	previous	code	where	you	only	needed	to	change	one	or	two	
things.	Since	our	data	is	in	an	array	we	will	use	a	foreach	loop	to	print	it	out.	It	is	best	to	
think	of	the	HTML	you	want	to	create	before	trying	to	print	it	out.	I	am	going	to	print	out	
my	foods	in	an	ordered	list	but	inside	that	ordered	list	I	want	to	get	a	little	fancy	for	styling	
reasons.	Here	is	what	I	want	it	to	look	like	(see	sample	csv	at	the	beginning	of	the	chapter	
as	that	is	where	the	data	(information)	is	coming	from):	

	

Of	course	the	look	is	all	CSS	but	here	is	the	HTML	markup	I	used	inside	the	li	element:	

	

Ok	the	hard	part	is	to	notice	the	data	is	all	going	to	be	replaced	by	the	array	variable	and	
column	number.	My	array	name	is	$foods	so	in	a	foreach	loop	the	row	would	be	called	
$food	following	our	naming	conventions.	Looking	at	the	first	line,	the	first	piece	of	data	is	
the	URL	for	the	hyper	link.	Looking	in	our	csv	file	/	Excel	file	that	is	column	E	which	is	the	
fifth	column	but	since	computers	start	counting	with	zero	it	would	$food[4].	So	that	first	
line	would	look	like	this	in	PHP:	

print '';

See	how	I	put	single	quotes	around	the	text	that	stays	the	same?	Then	I	concatenate	the	
variable	for	the	data?	In	the	end	my	foreach	loop	looks	like	this	to	display	the	data:	

<?php
// display the data
print '';
foreach ($foods as $food) {
 if ($food[0] != "") { //the eof would be a ""
 print '';
 print '';
 print '<img src="images/' . $food[5] . '" alt="' . $food[2]
. '">';
 print '';
 print '' . $food[1] . '';
 print '' . $food[2] . '';
 print '' . $food[3] . '';
 print '';
 }
}
print '';

if ($debug) print '<p>End of processing.</p>';

?>

Notice	I	added	an	if	statement	inside	the	loop	to	make	sure	that	I	had	data	in	the	first	
column.	This	is	because	the	end	of	the	file	shows	up	in	my	array.	Secondly	I	added	a	debug	
statement	to	just	print	out	I	was	at	the	end	to	indicate	all	my	code	had	been	executed.	

Of	course	the	look	all	comes	from	the	CSS	applied	to	the	HTML	and	though	not	part	of	this	
chapter	on	files	here	is	the	CSS	I	used	for	the	example:	

img{
border: .1em solid #555555;
padding: .2em;

}

img:hover{

background-color: #D39745;
}

ol{

text-align: center;
}

ol li{

background-color: #F3EFE0;
border: thin solid darkgray;
border-radius: 15px;
box-shadow: 10px 10px 5px #888888;
display: inline-block;
list-style-type: none;
margin: 1em;
padding: 1em;
text-align: center;
width: 320px;

}

ol + li{

margin-left: 0;
}

.userId{

float: right;
color: #028198;

}

.description{

clear: both;
color: #555555;
display: block;
text-align: left;

}

.calories{

color: #555555;
display: block;
padding-top: 2em;
text-align: left;

}
	 	

Self	Test	Questions	
topics:

- opening a file (fopen)
- reading, appending, writing
- csv files
- debug
- one line if statements w/o brackets
- fgetcsv
- fclose

	
Challenge	Questions	

1. Animals
Create a file named ‘animals.csv’ and fill it with your favorite animals, separated by a
comma.
Write some php code that displays all of the animals in the file.

2. First Five Entries

Create a file ‘file.csv’ and fill it with whatever you’d like, delimited by commas. Write
some php code that only displays the first five elements of the file.

3. Random Items

Create a file ‘file.csv’ and fill it with whatever you’d like, delimited by commas. Make sure
there are at least 10 or so entries. For this exercise we will use the php function ‘rand’
which takes two integer values $min and $max and chooses a random value between
them, inclusive.

rand(1,10) could output 5 for example.

Using the rand() function, print a random item from your file on screen. For the minimum
value, use 0. For the maximum value, enter in the number of items in your file (or get the
size of the array using the count() function)

4. Average of numbers
Create a file named ‘numbers.csv’ and fill it with as many integers as you want,
delimited by commas. Write some php code that prints the average of all the numbers in
the file.

For this problem you will need the php function (int) which converts a string value into an
integer value. It works as follows:

$integer = (int) $string;

5. Item Counter

Create a file named ‘shoppinglist.csv’ and fill it with your shopping list, delimited by
commas. Write some php code that displays the number of items in the shopping list.
(Hint: use the php count() function)

	

Answers	to	Challenge	Questions	
1. Answer:

<?php
$file = fopen(‘animals.csv’, “r”);
while ($feof($file)){

$animals[] = fgetcsv($file);
}
foreach($animals as $animal){

print '<p>' . $animal . '</p>';
}
fclose($file);

?>

2. Answer:

<?php
$file = fopen(“file.csv”, “r”);
while($foef($file)){
 $stuff[] = fgetcsv($file);
}

print '<p>' . $stuff[0] . '</p>';
print '<p>' . $stuff[1] . '</p>';
print '<p>' . $stuff[2] . '</p>';
print '<p>' . $stuff[3] . '</p>';
print '<p>' . $stuff[4] . '</p>';

?>
You could use for loop for as well

	

3. Answer:
<?php

$file = fopen(“file.csv”, “r”);
while($foef($file)){

$stuff[] = fgetcsv($file);
}
$randInt = $rand(0,count($stuff));

print '<p>' . $stuff[$randInt] . '</p>';

?>
	

4. Answer:
<?php

$file = fopen(“numbers.csv”, “r”);
while($foef($file)){

$numbers[] = fgetcsv($file);
}
$sum = 0;
foreach($numbers as $number){

$sum += (int) $number;
}
$average = $sum / count($numbers);
print '<p>' . $average . '</p>';

?>

5. Answer:

<?php
$file = fopen(“shoppinglist.csv”, “r”);
while($foef($file)){

$shoppingList[] = fgetcsv($file);
}
$numItems = count($shoppingList);
print '<p>' . $ numItems. '</p>';

?>
	

