
Chapter	4	Functions	

We	have	been	using	PHP	built	in	constants	like	PHP_EOL	for	a	\n	to	print	the	end	of	line	in	
our	output.	We	have	also	used	the	built	in	PHP	function	fopen('path/filename',
'mode').	That	has	two	parameters	that	it	needs.		A	new	built	in	variable	in	PHP	that	we	
are	going	to	use	is:	

$_SERVER['PHP_SELF']

Which	you	may	notice	is	an	array	(because	of	the	square	brackets).	PHP_SELF	is	just	one	of	
the	variables	in	the	array	which	holds	the	information	after	the	domain	name.	So	for	
example	if	my	url	is:	

https://rerickso.w3.uvm.edu/cs008/tryme.php	

then	PHP_SELF	would	have:	

cs008/tryme.php	

This	is	useful	to	use	for	a	few	reasons,	I	will	explain	one.	I	can	use	a	built	in	PHP	function	
called		pathinfo	which	will	separate	cs008/tryme.php	into	the	different	parts	(note	I	will	
explain	htmlentities	in	a	minute.	

$phpSelf = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, "UTF-8");
// break the url up into an array, then pull out just the filename
$path_parts = pathinfo($phpSelf);

Now	path	parts	is	an	array	we	can	pull	out	just	the	name	of	the	file	like	this:	

$path_parts['filename']

which	would	just	have	the	filename	tryme.	The	reason	I	would	like	to	do	this	is	because	
every	html	body	element	is	supposed	to	have	an	id	equal	to	the	file	name.	We	can	have	php	
do	this	automatically	like	this:	

print '<body id="' . $path_parts['filename'] . '">';

	

Of	course	we	need	all	the	code	like	this:	

<?php
// parse the url into htmlentities to remove any suspicious vales that
// someone may try to pass in. htmlentities helps avoid security issues.
$phpSelf = htmlentities($_SERVER['PHP_SELF'], ENT_QUOTES, "UTF-8");

// break the url up into an array, then pull out just the filename
$path_parts = pathinfo($phpSelf);
?>

<!DOCTYPE html>
<html lang="en">
 <head
 <title>read this http://moz.com/learn/seo/title-tag </title>
 <meta charset="utf-8">
 <meta name="author" content="Robert M. Erickson">
 <meta name="description" content="read this:
http://moz.com/learn/seo/meta-description ">
 <!-- see: http://webdesign.tutsplus.com/tutorials/htmlcss-
tutorials/quick-tip-dont-forget-the-viewport-meta-tag/ -->
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="stylesheet" href="style.css" type="text/css"
media="screen">
 </head>

<?php // giving each body tag an id really helps with css later on
print '<body id="' . $path_parts['filename'] . '">';
?>

	

There	is	a	built-in	function	that	we	will	use	all	the	time	called	htmlentities
[http://php.net/manual/en/function.htmlentities.php]	and	it's	purpose	is	to	help	with	
security	of	our	web	sites	by	taking	potential	malicious	information	and	converting	it	to	a	
harmless	html	entity	[https://www.w3schools.com/html/html_entities.asp]	.	An	html	
entity	is	how	I	display	the	html	code	on	the	web	page.	For	example	the	less	than	symbol	is	
always	the	start	of	an	html	element	so	in	order	to	display	a	less	than	symbol	we	use	the	
html	entity	in	our	code	$lt;	which	the	browser	will	display	as	<	(less	than	symbol).		

Now	let's	learn	how	to	make	our	own	functions.	Functions	"Encapsulate"	(enclose)	a	task	
that	you	are	coding.	What	this	does	for	us	is	to	have	a	one	line	function	call	that	can	
replace	many	lines	of	PHP	code	in	our	program.	Making	the	code	shorter	is	almost	always	a	
good	thing.		

Ok	first	maybe	we	should	talk	about	why	you	make	a	function.	Generally	if	you	find	
yourself	writing	a	piece	of	code	once	and	then	coping	and	pasting	that	code	to	another	
location	you	should	start	to	think	to	yourself	should	I	make	a	function	for	this?	Just	to	let	
you	know	you	do	get	better	at	this	as	you	go	along,	it	comes	with	experience	and	ten	years	
of	PHP	programming	you	will	start	to	have	a	really	good	handle	on	what	works	and	what	
does	not	work	well.	

On	to	functions.	A	function	is	created	with	a	function	declaration	statement	like	this	(NOTE:	
there	will	be	a	closing	}	at	the	end	of	the	function):	

function DescriptiveName([$variable names for inputs needed]){

Where	the	blue	word	function	is	a	PHP	reserved	word	to	identify	this	as	a	function.		The	
green	text	is	the	name	you	give	to	your	function.	I	generally	follow	CamelCase	notation	with	

the	first	letter	capitalized	unlike	variables	where	the	first	letter	is	lowercase.	Inside	the	
parentheses	we	have	the	variables	that	the	function	needs.	You	will	notice	the	[square	
brackets]	which	identify	that	this	is	optional	(you	never	actually	type	the	square	brackets,	
they	are	for	an	array).	Not	all	functions	require	a	parameter	and	some	require	several.	A	
programmer	tries	to	minimize	the	number	of	parameters	a	function	needs	(more	than	
three	gets	bulky,	but	its	never	a	perfect	world	and	you	may	see	functions	with	more	than	
three).		

Generally	I	place	my	functions	in	a	separate	file	(that	contains	many	functions,	though	
sometimes	only	one)	that	I	include	like	other	files	when	I	need	them.	Let's	have	an	example	
where	we	want	to	make	a	function	that	will	calculate	the	area	of	a	Bedroom	(or	kitchen,	
living	room,	deck	or	in	math	terms	a	square	or	rectangle).	There	is	not	a	lot	of	math	in	this	
course	but	we	should	be	able	to	take	a	mathematical	formula	and	code	it	into	a	function.	
The	area	is	calculated	as	the	length	times	the	width.	Let	us	look	at	this	studio	apartment:	

	

The	area	of	the	studio	space	would	be	13	times	19	equals	247	square	feet.	Let	us	write	the	
function	to	return	this	calculation.	We	could	write	the	function	to	print	the	value	but	most	
times	it	is	better	to	return	the	value	as	in	some	cases	we	may	not	want	to	print	it	right	away	
(Maybe	you	want	to	add	up	all	the	square	feet	for	each	room).	We	start	off	by	thinking	of	a	
good	name	for	our	function,	hmm	how	about	calculate	area	(CalculateArea	in	camel	case).	
What	values	do	we	need	to	do	this?	We	need	length	and	width.	Here	is	what	our	function	
declaration	statement	would	look	like:	

function CalculateArea($length, $width){

Since	we	want	to	get	the	area	I	will	make	a	variable	with	that	name	and	initialize	it	out	of	
habit.	I	also	add	some	comments	to	clear	things	up.	The	whole	function	would	like	this:	

/* given the inputs this function returns the area
 $length should be greater than zero
 $width should be greater than zero
*/
function CalculateArea($length, $width){
 $area = "";
 $area = $length * $width;
 return $area;
}

And	the	function	call	would	look	like	this:	

print "<p>The Apartment is: " . CalculateArea(19,13) . " square
feet.</p>";

Of	course	I	have	just	hard	coded	the	values.	Normally	you	would	most	likely	have	the	
person	fill	out	a	form.	A	better	way	to	code	this	would	be	to	use	variables	like	this:	

<?php
$length = 19;
$width = 13;
print "<p>The Apartment is: " . CalculateArea($length,$width) . " square
feet.</p>";

The	next	step	would	be	to	pass	the	values	into	the	web	page	using	the	GET	format	until	you	
learn	how	to	make	a	form.	So	what	do	you	think	of	this	code:	

<?php
/* given the inputs this function returns the area $length should be
greater than zero $width should be greater than zero */
function CalculateArea($length, $width){
 $area = "";
 $area = $length * $width;
 return $area;
}

$length = (int) htmlentities($_GET["length"], ENT_QUOTES, "UTF-8");
$width = (int) htmlentities($_GET["width"], ENT_QUOTES, "UTF-8");
print "<p>The Apartment is: " . CalculateArea($length,$width) . " square
feet.</p>";

If	we	named	this	page	square-feet.php	and	used	the	url	to	pass	the	values	in	the	url	would	
look	like	this:	

https://rerickso.w3.uvm.edu/cs008/square-feet.php?length=19&width=13		

All	of	the	examples	would	print	the	same	thing.	Clear	as	mud?	I	want	to	introduce	
something	called	a	dummy	function	that	does	not	really	do	anything	but	act	as	a	place	
holder	until	the	code	can	be	completed.		

For	example	let's	say	you	want	to	have	someone	log	into	your	web	site.	However	you	don't	
know	how	to	do	that.	Well	you	can	pretend	or	hard	code	it	for	now	until	you	learn	or	hire	
an	outside	contractor.	So	logically	you	only	want	to	display	the	page	if	the	person	is	logged	
in	otherwise	you	want	to	display	the	login	screen.	A	flow	chart	would	look	like	this:	

	

To	check	if	a	user	is	logged	we	would	have	to	compare	their	username	and	password	to	
what	is	on	file	etc..	However	we	can	just	code	this	with	a	dummy	function	so	that	we	can	
continue	working.	You	can	have	a	function	call	in	an	if	statement.	Let's	start	with	the	
function	where	we	create	the	function	declaration	statement	and	return	true	to	say	yes	the	
user	is	logged	in.	We	would	of	course	want	to	test	this	by	returning	false	as	well.	Here	is	the	
function:	

//++
// Check to see if user is logged in
function UserLoggedIn($username) {
 return true;
}

Our	code	in	the	file	would	look	like	this:	

if (UserLoggedIn($username)) {
 // display page etc.
}else{
 // display login page. You can use an include
 // display page etc.
}	

Since	our	function	returns	true	we	can	just	keep	working	on	the	page	until	we	figure	out	
how	to	do	that.	It	is	also	a	great	way	to	test	your	logic	in	your	page	before	spending	time	on	
writing	a	lot	of	code	in	a	function.		

So	functions	help	us	to	consolidate	our	code.	We	can	do	something	similar	with	our	html	
code	as	well.	Looking	at	the	major	boxes	of	our	html	they	look	like	this	where	I	have	
divided	the	page	into	six	main	sections:	

	

The	first	section	I	call	top	because	well	it	is	just	at	the	top.	The	top	section	includes	the	
document	type	element	to	the	opening	body	element.	I	take	this	code	and	I	separate	it	not	
into	a	function	but	into	a	file.	I	name	this	file	top.php.	What	php	allows	us	to	do	is	to	include	
[see:	http://php.net/manual/en/function.include.php]	a	file	in	another	file.	Conceptually	it	
is	having	php	open	the	file	read	all	the	content,	copy	it	and	then	paste	it	where	you	put	the	
include	statement.	So	for	example	instead	of	typing	the	doc	type	in	every	page	I	type	that	
section	in	a	file.	I	then	include	that	file.	It	would	look	something	like	this:	

<?php
include "top.php";

There	is	nothing	before	this	line	not	even	white	space.	

The	second	section	holds	the	header	element	where	your	companies	name	and	logo	go.	I	
call	this	section	the	header	section	(ok	maybe	names	aren't	fancy	but	they	do	describe	what	
they	are)	and	I	name	the	file	header.php.	I	would	then	add	to	the	code	the	include	
statement	for	the	header	so	it	looks	like	this:	

<?php
include "top.php";
include "header.php";

	

After	the	logo	the	next	item	that	shows	is	the	navigation	section,	which	I	name	that	file	
nav.php	(I	am	getting	lazy	in	my	typing	so	I	abbreviated	navigation).	Adding	the	nav	to	our	
php	we	now	have:	

<?php
include "top.php";
include "header.php";
include "nav.php";
?>

	

Sometimes	I	want	my	navigation	html	box	inside	my	html	head	box	so	I	just	put	the	include	
nav	statement	inside	the	file	header.php	so	it	would	look	like	this:	

<!-- ##################### Page header ############################ -->
<header>
 <h1>main title for SITE</h1>
</header>
<?php
include "nav.php";
?>

And	of	course	I	would	NOT	include	nav.php	in	the	my	file.	

Now	the	fourth	section	is	the	main	body	of	your	content	and	I	have	placed	that	in	an	article	
element	(or	a	section	element).	This	section	is	just	all	your	content	that	changes	from	page	
to	page.	The	first	three	sections	don’t	really	change	from	page	to	page.	

The	fifth	section	is	what	shows	up	at	the	bottom	of	the	page	so	I	call	this	the	footer	section,	
filename	of	footer.php	of	course.		The	code	looks	like	this:	

<?php include ("footer.php"); ?>

I	have	placed	the	sixth	section	just	in	the	page	itself	or	in	the	footer.php,	either	way	works.	
Here	is	how	the	code	that	you	put	in	your	file	would	look	like:	

		

Think	about	how	a	large	web	site	with	a	thousand	individual	pages	would	work	when	you	
wanted	to	change	one	menu	item.	You	would	need	to	edit	a	thousand	files.	Now	think	about	
the	same	site	when	you	use	include	files.	You	only	need	to	change	one	file,	nav.php	and	the	
whole	thousand	web	pages	are	updated.	The	include	statement	is	a	pretty	handy	piece	of	
code.	

Summary	
Functions	make	reusing	code	easier.	

PHP	comes	with	many	built	in	functions	and	variables.	

The	function	declaration	tells	you	the	name	of	the	function	and	what	parameters	(values)	
the	function	needs.	

Generally	functions	return	a	value.	

Includes	allow	you	to	reuse	your	html	(or	php)	code	on	more	than	one	page.	

Self	Test	Questions	
1. Create	a	function	to	calculate	a	tip	for	your	dinner	bill.	The	user	would	need	to	enter	

the	sub	total	and	the	%	amount	they	want	to	tip.	Have	the	function	return	the	dollar	
amount	to	tip.	You	can	pass	the	amounts	into	the	web	page	using	the	GET	format.	

2. Create	a	function	to	calculate	your	tax	on	your	dinner	bill	using	a	9%	meals	tax	.	The	
user	would	need	to	enter	the	sub	total.	Have	the	function	return	the	dollar	amount	
of	the	tax.	You	can	pass	the	amounts	into	the	web	page	using	the	GET	format.	

3. Create	a	function	that	calls	the	previous	functions	to	calculate	your	total	bill.	The	
user	would	need	to	enter	the	subtotal	and	%	amount	they	want	to	tip.	Use	a	9%	
meals	tax.	Have	the	function	return	the	total	amount	of	the	bill.	You	can	pass	the	
amounts	into	the	web	page	using	the	GET	format.	

4. Put	your	functions	above	in	a	separate	file	called	functions.php	and	include	this	file	
in	top.php.	

5. Edit	your	top.php	so	that	it	displays	the	name	of	the	file	as	part	of	the	title	element.	
6. Kilometer	Converter	

Write	some	php	code	that	converts	a	kilometer	distance	stored	in	a	variable	to	
miles.	You	should	create	a	function	to	do	the	conversion.	The	conversion	formula	is	
as	follows:	

Miles	=	Kilometers	X	0.6214	

7. Automobile	Costs	

Write	some	php	code	that	takes	the	monthly	costs	for	the	following	expenses	
(stored	in	variables)	incurred	from	operating	an	automobile:	loan	payment,	
insurance,	gas,	oil,	tires,	and	maintenance.	The	page	should	display	the	total	monthly	
cost	of	these	expenses,	and	the	total	annual	cost	of	these	expenses.	Be	sure	to	create	
functions	to	solve	this	problem.	(Optional	addition:	try	loading	these	values	from	a	
csv	file!)		

8. Stadium	Seating	

There	are	three	seating	categories	at	a	stadium.	For	a	softball	game,	Class	A	seats	
cost	$20,	Class	B	seats	cost	$15,	and	Class	C	seats	cost	$10.	Write	a	php	function	that	
takes	as	input	the	number	of	tickets	for	each	class	of	seats	that	were	sold,	and	then	
displays	on	screen	the	amount	of	income	generated	from	ticket	sales.	

9. Paint	Job	Estimator	

A	painting	company	has	determined	that	for	every	112	square	feet	of	wall	space,	
one	gallon	of	paint	and	eight	hours	of	labor	will	be	required.	The	company	charges	
$35.00	per	hour	for	labor.	Write	a	php	function	that	takes	in	the	value	of	the	square	
feet	of	wall	space	to	be	painted	and	the	price	of	the	paint	per	gallon.	Then	display	on	
the	page	the	following	data:	

- The	number	of	gallons	of	paint	required.	

- The	hours	of	labor	required	

- The	cost	of	the	paint	

- The	labor	charges	

- The	total	cost	of	the	paint	job	

10. Maximum	of	Four	Values	

Write	a	function	named	max	that	accepts	four	integer	values	as	arguments	and	
returns	the	value	that	is	the	greater	of	the	two.	For	example,	if		7	,	3,	5,	and	12	are	
passed	as	arguments	to	the	function,	the	function	should	return	12.	Print	the	
returned	number	on	screen.	

	

Answers	
Kilometer	Converter	Answer:	

<?php	

$kilometers	=	50;	

function	Convert($kilometers){	

$kilometers	=	$miles	*	0.6214;	

return	$kilometers;	

}	

print	“<p>”	.	$kilometers	.	“	Kilometers	is	“	.	Convert($kilometers)	.	“	Miles.</p>”	

?>	

Automobile	Costs	Answer:	

<?php	

$loan	=	100	

$insurance	=	150	

$gas	=	100	

$oil	=	10	

$tires	=	50	

$maintenance	=	50	

	

function	totalMonthlyCost($l,	$i,	$g,	$o,	$t,	$m){	

	 return	$l	+	$i	+	$g	+	$o	+	$t	+	$m;	

}	

function	totalAnnualCost($l,	$i,	$g,	$o,	$t,	$m){	

	 return	12	*	($l	+	$i	+	$g	+	$o	+	$t	+	$m);	

}	

	

print	“<p>Total	monthly	cost:”	.	totalMonthlyCost($loan,	$insurance,	$gas,	$oil,	$tires,	
$maintenance)	.	“</p>”;	

print		“<p>Total	annual	cost:”	.	totalAnnualCost($loan,	$insurance,	$gas,	$oil,	$tires,	
$maintenance)	.	“</p>”;	

?>	

Stadium	Seating	Answer:	

<?php	

$numClassA	=	147;	

$numClassB	=	462;	

$numClassC	=	1054;	

	

function	incomeGenerated($a,	$b,	$c){	

$total	=	$a	*	20	+	$b	*	15	+	$c	*	10;	

return	$total;	

}	

print	“<p>The	total	amount	of	income	generated	was	$”	.	
incomeGenerated($numClassA,$numClassB,$numClassC)	.	“</p>;	

?>	

Paint	Job	Estimator	Answer:	

<?php	

$wallSpace	=	1000;	

$paintPricePerGallon	=	10;	

	

function	paintJob($ws,	$pp){	

$numGallons	=	$ws	/	112;	

$numHoursLabor	=	$numGallons	*	8;	

$costOfPaint	=	$numGallons	*	$pp;	

$laborCharges	=	$numHoursLabor	*	35;	

$totalJobCost	=	$costOfPaint	+	$laborCharges;	

	

print	“<p>Number	of	gallons	of	paint	required:”	.	$numGallons	.	“</p>”;	

print	“<p>Hours	of	labor	required:”	.	$numHoursLabor	.	“</p>”;	

print	“<p>Paint	cost:”	.	$costOfPaint	.	“</p>”;	

print	“<p>Labor	charges:”	.	$laborCharges	.	“</p>”;	

print	“<p>Total	cost	of	the	paint	job:”	.	$totalJobCost	.	“</p>”;	

}	

	

paintJob($wallSpace,$paintPricePerGallon);	

?>	

Maximum	of	Four	Values	Answer:	

<?php	

function	max($one,$two,$three,$four){	

$value	=	0;	

if($one	>	$value){	$value	=	$one;}	

if($two	>	$value){	$value	=	$two;}	

if($three	>	$value){	$value	=	$three;}	

if($four	>	$value){	$value	=	$four;}	

return	$value;	

}	

	

print	max(7,3,5,12);	

?>	

