
Chapter	5	Form	Processing	–	Security	Check	

	

The	above	diagram	represents	the	processing	that	needs	to	happen	for	every	form	and	
corresponds	to	the	GitHub	repository	commits:	https://github.com/Robert-Erickson/php-
form-template/commits/master.	Notice	the	diagram	can	be	placed	in	three	columns.	The	
first	column	is	for	starters	really	just	html	with	a	small	dab	of	php	and	is	commits	one	
through	four.	

Lets	look	at	the	diamond	shape	in	column	one.	I	guess	the	first	thing	you	need	to	do	is	
determine	if	the	form	was	actually	submitted.	Have	you	noticed	that	when	you	first	come	to	
the	form	page	the	post	array	is	empty	until	you	hit	submit?	We	don’t	want	to	just	check	if	
the	post	array	is	empty	we	want	to	be	a	little	more	specific	(you	could	have	more	than	one	
form	on	a	page)	by	looking	to	see	if	the	name	of	the	submit	button	is	in	the	post	array.	So	at	
the	start	of	section	two	we	can	use	the	PHP	method	isset	[
http://php.net/manual/en/function.isset.php]	which	checks	to	see	if	the	variable	is	in	
memory:	

if (isset($_POST["btnSubmit"])) {

Just	be	sure	that	you	use	the	name	you	gave	your	submit	button.	The	closing	curly	bracket	}	
would	be	at	the	end	of	Section	2.	

} // ends if form was submitted.

Looking	at	the	flow	diagram	our	next	questions	in	column	two	is:	Do	we	pass	security?	It	is	
best	to	make	a	function	for	this	check.	This	way	we	can	start	with	a	dummy	check	and	
increase	the	rigor	of	the	check	without	changing	the	flow	of	the	main	code.	We	are	going	to	
make	a	small	security	check	but	as	you	learn	more	about	security	in	other	classes	you	can	
add	to	this	function	for	increased	security.	

A	good	name	for	our	function	to	do	a	security	check	would	be	securityCheck	(NOTE:	I	used	
a	lower	case	s	to	match	my	GitHub	form	example,	I	try	to	be	consistent	but	I	don’t	always	
get	it	right).	The	value	we	would	need	would	be	the	URL	of	our	web	page.	We	have	part	of	
this	from	top.php	but	we	will	need	to	the	domain	without	the	http:	part.	We	can	do	this	in	
top.php	like	this:	

$domain = "//";
$server = htmlentities($_SERVER['SERVER_NAME'], ENT_QUOTES, "UTF-8");
$domain .= $server;

The	server	name	would	have	the	url	like	www.uvm.edu	and	of	course	we	have	to	use	our	
security	friend	htmlentities	as	this	is	information	that	comes	from	the	clients	computer.	

Then	in	our	form	page	we	can	define	a	variable	for	the	url	like	this:	

$thisURL = $domain . $phpSelf;	

Remember	$phpSelf	has	already	been	defined	in	top.php.		Speaking	of	top.php	remember	I	
said	I	generally	put	my	functions	in	a	separate	file?	I	will	put	this	security	function	in	a	file	
called	security.php	that	I	have	saved	in	the	lib	(short	for	library)	folder.	Since	security	is	so	
important	if	the	file	does	not	get	included	I	want	PHP	to	stop	so	I	am	going	to	use	the	
require	statement	instead	of	the	include	statement.	This	works	the	same	way	as	an	include	
statement	except	that	the	require	statement	will	produce	a	fatal	error	
(E_COMPILE_ERROR)	and	stop	the	script	not	producing	any	HTML	code.	The	include	will	
only	produce	a	warning	(E_WARNING)	and	the	script	will	continue	and	send	HTML	code	
though	it	will	be	missing	the	file	include.	The	once	part	says	only	include	it	once	don’t	
bother	to	include	a	second	time	if	it	is	already	there.	We	should	always	do	this	for	anything	
that	includes	functions	as	if	you	try	to	include	a	function	twice	it	will	result	in	a	php	error.	

require_once('lib/security.php');

We	can	start	our	function	as	a	dummy	function	to	test:	

//++
//performs a few security checks

function securityCheck ($thisURL) {
 return true;
}

This	way	we	can	test	the	logic	of	our	code	to	make	sure	that	it	is	correct	(corresponds	to	
Github	commits	five	and	six).	

I	want	to	introduce	the	PHP	die	[http://php.net/manual/en/function.die.php]	method	to	
stop	PHP	from	doing	anything	else.	Normally	you	don't	want	to	stop	a	program	from	
running	but	in	the	case	of	someone	trying	to	hack	into	our	site	sometimes	it	is	best	to	just	
stop.	It	is	also	a	way	to	not	use	an	else	statement	as	part	of	the	if.	Let's	look	at	this	code:	

/@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
//
// SECTION: 2a Security
//
if (!securityCheck($thisURL)) {
 $msg = "<p>Sorry you cannot access this page. ";
 $msg.= "Security breach detected and reported</p>";
 die($msg);
}

Notice	I	have	used	an	!	(exclamation	point)so	this	if	condition	is	read	as		
if	not	a	securityCheck		

or		
if	securityCheck	equals	false		
if (securityCheck($thisURL) == false) {

Hmm	maybe	I	should	have	changed	my	function	name	to	passSecurityCheck	or	
securityCheckPassed	as	it	might	read	better.	Coding	can	get	tricky	sometimes	and	because	
of	that	reason	I	just	want	to	give	you	a	security	check	function	that	looks	like	this:	

//++
// performs a simple security check
// start off thinking everything is good until a test fails
// when it is a form page check to make sure it submitted to itself

function securityCheck($myFormURL = "") {
 $debugThis = false;

 $status = true;

 if ($myFormURL != "") {
 $fromPage = htmlentities($_SERVER['HTTP_REFERER'], ENT_QUOTES, "UTF-8");

 $fromPage = preg_replace('#^https?:#', '', $fromPage);

 if ($debugThis){

 print "<p>From: " . $fromPage . " should match your Url: " ;
 print $myFormURL;

 }

 if ($fromPage != $myFormURL) {

 $status = false;
 }

 }
 return $status;
}

What	this	function	does	is	return	true	if	it	passes	or	false	if	it	does	not.	Inside	the	function	it	
compares	the	url	you	sent	to	the	page	with	the	url	of	this	page.	They	have	to	match	or	it	
fails.	It	is	not	the	end	all	to	security	but	this	is	a	simple	start.	The	nice	thing	is	that	by	using	
a	function	we	can	make	the	function	as	complex	as	we	are	able	to	and	it	does	not	change	
the	basic	logic	of	our	web	page.	Only	the	function	would	change.	

Summary	
Security	is	a	large	problem	on	the	web	and	we	do	to	everything	we	can	to	help	stop	the	
problem.		

Php	Htmlentities	is	a	simple	built	in	function	we	can	use	that	will	convert	all	applicable	
characters	to	HTML	entities.	This	will	convert	JavaScript	to		just	plain	text	and	not	execute.	

Self	Test	Questions	
1. Simple Security

Create a securityCheck function of your own that reads a variable and determines
whether the variable is secure or not. If the variable is set to 0, it is secure. If it is set to
1, it is not secure.

2. Security Extended
Add onto your security check function from the previous problem by using the die()
function to print a message if the value is not secure.

3. Security Further Extended
Edit your securityCheck function from the previous problem so that it checks two values
instead of one, and returns true if they are both equal to 0.

4. Security With Domain
Write a php security check function that gets the url of the file and checks if it is empty. If
its not empty, for the purpose of this exercise, the page is considered secure. Otherwise,
the page is considered not secure. Print the security level on screen.

5. Security With Domain and Die
Add onto your code from question 4 so that the program prints some important data on
screen if the page is secure, and quits execution if its not.

Answers	

1. Simple Security
<?php
$myValue = 0;

function securityCheck($theValue){
 if($theValue == 0){
 return true;
 }
 if($theValue == 1){
 return false;
 }
}

print securityCheck($myValue);
?>

2. Security Extended
<?php
$myValue = 0;

function securityCheck($theValue){
 if($theValue == 0){
 return true;
 }
 if($theValue == 1){
 return false;
 }
}
if(!securityCheck($myValue){
 $msg = “<p>Value not secure!</p>”;
 die($msg);
}
else {
 print “<p>Value secure.</p>”;
}
?>

3. Security Further Extended
<?php
$myValue = 0;
$mySecondValue = 1;

function securityCheck($theValue,$secondValue){
 if($theValue == 0 and $secondValue == 0){
 return true;
 }
 else {
 return false;
 }
}
if(!securityCheck($myValue){
 $msg = “<p>Value not secure!</p>”;
 die($msg);
}
else {
 print “<p>Value secure.</p>”;
}
?>

4. Security With Domain

<?php
$domain = “//”;
$server = htmlentities($_SERVER[‘SERVER_NAME’], ENT_QUOTES, “UTF-8”);
$domain .= $server;

function securityCheck($d){
 if($d != “”){
 return true;
 else {
 return false;
 }
}

if(securityCheck($domain)){
 print “<p>Secure</p>”;
} else {
 print “<p>NOT SECURE!</p>”;
}
?>

5. Security With Domain and Die

<?php
$domain = “//”;
$server = htmlentities($_SERVER[‘SERVER_NAME’], ENT_QUOTES, “UTF-8”);
$domain .= $server;

function securityCheck($d){
 if($d != “”){
 return true;
 else {
 return false;
 }
}

if(securityCheck($domain)){
 print “<p>Secure</p>”;
} else {
 $msg = “NOT SECURE”;
 die($msg);
}

print “<p>IMPORTANT DATA</p>”; // wont get printed if it dies!
?>

	
	

	

