
Chapter	7	Form	Processing	–	Validate	Data	

	

Once	our	data	has	been	sanitized	we	can	start	working	with	it.	Our	next	step	in	the	flow	
diagram	is	Validate	Data	which	means	checking	the	value	of	your	data	to	make	sure	the	
value	is	acceptable.	This	corresponds	to	Github	commit	seven.	We	cannot	check	for	
everything	but	we	can	check	for	many	things:	

1. Is	there	something	in	the	box?		
if ($password == "") {

2. Is	the	value	text	or	numbers	or	both?		
if (!verifyNumeric($total)) {
if (!verifyAlphaNum($password)) {

Where	do	these	functions	come	from?	Hang	on	I	will	show	you	soon.	
	

3. Does	the	value	fall	within	a	range	(ie.	0	to	100?	In	this	example	the	max	length	
should	be	set	to	3	even	though	999	would	still	pass	that	simple	test	it	would	keep	
1000	from	getting	in).		

if ($grade < 0 or $grade > 100) {

4. Does	the	value	contain	certain	values	(ie.	email	address	text@text.com,	file	
extension	[.jpg])	(where	$ext	has	the	file	extension	in	it).	
$extensions = array("jpg", "png");
if (in_array($ext, $extensions)) {
	

5. Does	the	value	need	a	particular	length	(ie.	password	must	be	6	characters	long)		
if (strlen($password) = 6) {
	

6. Does	the	value	need	a	minimum	length	(does	anyone	have	a	name	less	than	2	
characters?)	
if (strlen($password) < 2) {
	

To	check	these	things	you	need	to	make	a	function	to	do	so.	Here	I	have	made	several	
functions	that	you	can	use.	Notice	they	all	return	true	or	false.	Since	we	are	interested	in	if	
they	don’t	pass	I	have	used	the	!	symbol	in	some	of	my	if	statements	that	call	these	
functions.	I	put	these	functions	in	a	separate	file.	

//++
// series of functions to help you validate your data. Notice that each
// function returns true or false
function verifyAlphaNum($testString) {
 // Check for letters, numbers and dash, period, space and single quote
 // only. added & ; and # as a single quote sanitized with html entities
 // will have this in it bob's will be come bob's
 return (preg_match ("/^([[:alnum:]]|-|\.| |\'|&|;|#)+$/", $testString));
}

function verifyEmail($testString) {
// Check for a valid email address
// see: http://www.php.net/manual/en/filter.examples.validation.php
 return filter_var($testString, FILTER_VALIDATE_EMAIL);
}

function verifyNumeric($testString) {
 // Check for numbers and period.
 return (is_numeric($testString));
}

function verifyPhone($testString) {
// Check for usa phone number
// see: http://www.php.net/manual/en/function.preg-match.php
// NOTE: An area code cannot begin with the number 1, often when you type

// a number for testing you type 123 ... and it will not pass validation :)
 $regex = '/^(?:1(?:[. -])?)?(?:\((?=\d{3}\)))?([2-
9]\d{2})(?:(?<=\(\d{3})\))? ?(?:(?<=\d{3})[.-])?([2-9]\d{2})[. -]?(\d{4})(?:
(?i:ext)\.? ?(\d{1,5}))?$/';
 return (preg_match($regex, $testString));
}

You	will	notice	that	most	of	these	functions	use	what	is	called	a	regular	expression	[
http://www.regular-expressions.info/]	which	is	a	very	powerful	expression.	You	do	not	
need	to	be	able	to	write	regular	expressions	but	let's	just	dissect	a	simple	one:	

/^[a-zA-Z\s]+$/

1. /	begins	and	ends	the	regular	expression	
2. ^	start	at	the	beginning	character	
3. [matches	a	single	character	out	of	all	the	possibilities	inside	the	brackets	
4. a-z	means	any	lower	case	letter	from	a	to	z	
5. A-Z	means	any	upper	case	letter	A	to	Z	(see	character	set	table	below)	
6. \s	means	whitespace	
7.]	so	only	match	letters	and	whitespace	
8. +	one	or	more	of	the	previous	are	allowed	(ie.	you	can	have	more	than	one	letter)	
9. $	Matches	at	the	end	of	the	string	the	regex	pattern	is	applied	to	
10. So	we	match	one	more	letters	and	whitespace	for	the	whole	length	of	the	string,	it	

checks	each	character	one	at	a	time.	If	one	character	is	not	a	letter	or	a	white	space	
it	returns	false.	

The	basic	structure	of	validating	our	data	is	more	or	less	the	same.	

1. Perform	check	(ie	if	statement)	
2. Keep	track	of	an	error	message	
3. Flag	that	there	is	a	mistake	
4. Repeat	if	needed	(ie	elseif)	

	Here	is	what	we	do	for	validating	an	email	address	(see	how	we	repeat	steps	1,	2,	3):	

1. if ($email == "") {
2. $errorMsg[] = "Please enter your email address";
3. $emailERROR = true;
1. } elseif (!verifyEmail($email)) {
2. $errorMsg[] = "Your email address looks incorrect.";
3. $emailERROR = true;
 }

If	a	field	is	required	we	just	ask	if	it	is	empty.	Since	we	do	not	know	how	many	mistakes	a	
user	may	make	we	accumulate	the	error	messages	into	an	array.	Then	we	can	use	a	for	

each	loop	to	display	all	of	them	in	an	ordered	list.	This	will	display	before	the	form	and	is	
for	accessibility.	A	blind	person	will	hear	the	form	has	the	following	mistakes	then	speak	
them	in	the	order	they	are	on	the	form.	For	this	reason	be	sure	to	check	for	errors	in	the	
order	the	form	objects	appear	on	your	form.	

If	the	variable	is	not	empty	we	perform	the	next	check	on	it,	which	calls	the	function	
verifyEmail.	Since	verifyEmail	returns	true	when	it	is	good	we	use	the	!	operator	as	we	are	
only	interested	in	when	it	fails	(remember	this	is	the	same	as:	

	if (verifyEmail($email)== false)	

If	there	are	mistakes	we	want	to	redisplay	the	form.	By	putting	the	values	in	the	form	
variables	(when	we	sanitize	the	data)	are	form	is	setup	to	be	sticky	so	that	all	the	values	the	
user	typed	in	will	display	back	on	the	form	again.	It	is	pretty	neat	logic	and	may	take	awhile	
for	you	to	wrap	your	head	around	it.	

Summary	
We	always	need	to	check	to	see	if	the	data	we	are	getting	is	going	be	correct.	Several	things	
we	can	check	

- 	if	empty	or	missing	

- Numbers,	characeters	

- check	if	value	is	within	range	[strlen($password)	==	6]	

	

Self	Test	Questions	
1. Empty Checker

Build a simple form with one element and a submit button. On submit, validate to make
sure the data entered is not empty.

2. Content Checker
Build a simple form with one element and a submit button. Create an array of strings to
test against. On submit, validate to see if the submitted data contains a string from the
array. Print “true” if so, “false” if not.

3. Length Checker
Build a form with two elements and a submit button. Validate the two entries to ensure
they are the same length. If they are not, print false;

4. Email Validation
Create your own function that validates an email by simply checking if it contains an @
symbol. Use the strpos function as shown below:

$email = “myemail@email.com”;
if (strpos($email, '@') == true) {
 echo 'true';
}

Build a form with one element and a submit button, and validate the email.

5. Password Validation

Create	a	rudimentary	password	validation	service	using	a	form	with	one	field	and	a	submit	
button.	The	password	should	be	stored	as	a	variable,	and	the	code	should	check	to	see	if	the	
entered	password	matches	the	stored	variable	and	return	true	if	so.	

